

Up and Running Software – The Development Process
Success Determination, Adaptative Processes, and a Baseline Approach

About This Document:

Thank you for requesting more information about Up and Running Software’s development workflows. We
would like to introduce our processes with the following document, as well as present how a software
development process designed for your needs can be arrived at.

The visualization below presents how a software project typically evolves in our experience. This document
focuses in on the Plan, Work, and Communication components of the software project (rows 2 and 3), which
exist to ensure that a system that people like and use is created.

The approach we take in presenting this material helps uncover what you consider important in a process and
a project, sets the expectation that processes within a project will almost certainly evolve and adapt as the
context changes and your needs change, and then presents our baseline approach, as well as some other
important project considerations.

If you have feedback or questions about anything as you go through this document, we would be pleased to
hear from you at any time.

Process Goals – What Determines Success?:

The primary goal of any process is results, how YOU determine success. It’s important to define explicitly what
success is to you. If you and we don’t do that, then the process will likely not achieve this from the start,
though it’ll likely get there over time with adjustments. Here are the common success criteria for a software
development project, which should be thought through and prioritized:
• Architecture: how well the system is designed for future growth and extensibility.
• Build vs. Buy/Open Source: how much of the code will be purchased or community-derived versus built

from scratch.
• Customer involvement: whether you want to be actively involved, or be involved as little as possible.
• Money (Resources, Cost, Budget): how much money is spent to get the work done.
• Quality: where within the spectrum of proactive-to-reactive quality assurance you wish to be.
• Scope: how much or how little work will be done. This could be described as “quantity of output” and

“depth or quality of output”.
• Speed (Schedule, Time): how fast the work is done.
• Standardization: to what degree the process and/or code should be standardized per your company’s

needs and preferences.
• …many more.

Scott Ambler, a leader in the agile arena, has presented this concept of competing goals nicely by focusing on
perhaps the three most important goals of a project: scope, resources, and schedule. In one section, he writes,
“Recognize that the iron triangle must be respected. The iron triangle refers to the concept that of the three
critical factors – scope, cost, and time – at least one must vary otherwise the quality of the work suffers.
 Nobody wants a poor quality system, otherwise why build it? Therefore the implication is that at least one of
the three vertexes must be allowed to vary. The problem is that when you try to define the exact level of
quality, the exact cost, the exact schedule, and the exact scope to be delivered you virtually guarantee failure
because there is no room for a project team to maneuver.”

Source for quote and image: http://www.ambysoft.com/essays/brokenTriangle.html

How these are prioritized and assigned relative weights by you is a subjective determination. There is no right
or wrong approach; it’s just a matter of what works better for you. However, it’s important to recognize the
competing relationships between these success criteria, for example:
• If you want the project to be done quickly, there are several ways to do that: 1) Increase the number of

team members, 2) decrease the scope, 3) loosen the quality restrictions, 4) use something that exists
already (buy or use open source software), and more. Of course, all of these affect money, quality,
scalability, and more.

• If you want the project to be done cheaply, you’ll need to explore if you want a lot done in an “ok” manner
or a smaller amount done really well. What will influence your decisions are quality, scalability, timeline,
and more.

• If you want the system to work seamlessly and be architecturally sound, you’ll need to invest in the design
of the architecture, carefully consider whether the work should be built or bought/found within the open
source community, and plan in senior-level development reviews of all the code throughout the process.
All of this takes time, which increases the timeline and costs in the short-term (in the long-run, the total
cost of ownership (TCO) will be low for a well-designed system, whereas the TCO of a poorly-designed
system may be less for the first year or two, but will cost more, usually multiples more, over the system’s
total life).

Once the success criteria are known, then your preferred process can be defined. Some examples:
• Speed and quality should take precedence: processes will be defined to move as fast as possible, and

ensure the greatest level of quality is adhered to. This will increase costs.

http://www.ambysoft.com/essays/brokenTriangle.html

• Cost minimization should take precedence: processes will be defined to control costs, which will slow
down the speed of development. This means fewer resources on the project, a minimization of senior
development time (oversight, quality control, etc.), and usually fewer quality control processes, which
means the quality control processes are more reactive than proactive. To further reduce costs, it’s
recommended that you do whatever you can yourself, such as the design work and interface testing (we
can show you how).

• Quality is of the utmost importance (healthcare software, e-commerce software dealing with transactions
and sensitive consumer data, missile defense software, etc.): processes will be designed to ensure testing
of the software in a formalized manner at all levels of the software development process. This will
increase the costs, but it’s worth it if the costs of errors downstream are not ethically and/or financially
acceptable.

Implementation and Adaptation per Changing Needs & Constant Improvement:

At this point, your preferred process can be implemented to support your success criteria.

Just as software development itself is iterative and constantly improving, we believe the process should adapt
based on your existing processes, stakeholder preferences, business goals, lessons learned, success criteria,
and new or changed project considerations.

Most things will go really well in a project, but there will be issues, questions, and concerns, which is entirely
normal. In the ideal business relationship, we can talk through issues candidly and openly, fix the issues, and

implement long-term process updates so that the issues are avoided in the future. (Related to this topic, we
like the approach for a great vendor and customer relationship that’s presented in Appendix B.)

A Baseline:

We do have a baseline software development process that we recommend to customers who don’t have their
own processes in place, or would like to learn what we use. We should mention that we adapt this to each
customer’s needs so what is presented here may be more than is needed for all projects.

We’ll first present a couple of workflows that we hope indicate broadly how we approach software
development.

Software Development, One Way of Defining it Complexly

The following dives into more detail about some critical aspects of the process.

Know Where You’re Going via Images / Pictures / Mock-ups / Wireframes / Low-fidelity User Interfaces
(“mock-ups” from here on out): The “a picture is worth a thousand words” idiom applies here. The mechanism
for this can be quite simple; that is, the medium does not matter. We and our customers have done these by
hand on paper or white board, and then images were shared electronically by taking digital pictures of the
results or by scanning them in. If you prefer to mock up the designs using software, anything that can draw
will work, including software that most people have for creating presentations, documents, and custom
graphics. For those that want software designed for the purpose, solutions such as Balsamiq, Azure,
OmniGraffle, and Visio are popular ones. Please see Appendix A for example mock-ups.

Here are some notes on this important process:
• In terms of the value created for the time involved, we consider this step to be one of the most valuable in

the software development process. It will save you time, it will reduce ambiguity, and it will save you
money. We have familiarity with Business Requirement Documents (BRDs), and though useful, they can
be replaced entirely by mock-ups. Focusing on one output reduces overhead by simplifying the process
and focusing attention. As an example, in some cases, a mock-up can replace tens of pages in a BRD.

• Annotating the images using “call-outs” is really helpful. They can reference other documents if needed
too. However, the goal should be to include all aspects of the business requirements in the interfaces
themselves. This will save time in development and validation of the development results.

• Run the interfaces by representative users and colleagues to see if they intuitively make sense to them.
Have them use the interfaces as if it was a real system. In most systems and in most cases, people don’t
seem to read the help guides so provide little to no help text and no introduction, and observe what the
users can do on their own. To apply another idiom, “measuring twice and cutting once” sure saves a lot of
money; that is, downstream changes are a lot more expensive than defining things well upfront. (This
process could be considered as a form of “paper prototyping”.)

• If you have final designs created, then we’re past the point of creating mock-ups. If you haven’t done the
paper prototyping process though, you might consider it. Though you’ve invested in the high-fidelity user
interfaces, it’s still cheaper to change things now versus later.

• If you don’t want to create mock-ups or don’t have time to, that’s no problem, we can do them based on
your business requirements. If you prefer to not do this as part of the process, we understand; we really
want to approach the work how you think it should be approached.

• Sometimes there are workflows that are not obvious by looking at the mock-ups. Here are some steps
that can be taken at this point:

o Creating a flowchart: any flowcharting approach will work. If you know a formal process for this,
by all means, please put it to work. However, if you don’t, that’s ok; you’re going to provide
tremendous value and definition just by writing out the workflows however you want to. Googling
“flowchart how to” or “flowchart examples” will help you to do this easily.

o Documenting user stories (simply tell the story of how the system will be used from the user’s
perspective, keeping in mind the user’s specific role). Scott Ambler presents how to create and
use user stories well here: http://www.agilemodeling.com/artifacts/userStory.htm. Here’s
another helpful resource: http://www.stellman-greene.com/2009/05/03/requirements-101-user-
stories-vs-use-cases/

• How you organize and manage these mock-ups is your decision, and usually depends on the complexity of
the system. We’ve seen people use a file structure, a ticket system, the modeling software itself, and a
classification system. We prefer to use a ticket system so that everything that relates to a topic is
organized within and easily accessible from that ticket.

Communicate with Developers via Functional Specifications: At this point, we will create functional
specifications if needed, which are the specifications the developers use to implement the site. This serves the
following purposes:
• It validates the mock-ups in that a detailed review of them is made, and detailed questions are asked if any

ambiguity exists. This may cause more iterations of the mock-up process to happen, which is great
because that’ll save you money by correcting issues early in the process before actual development occurs.

• It produces documentation that developers will use to implement the site. Example outputs, which are
produced as needed: 1) Entity Relationship Diagram – presents all of the database relationships, 2) Data
Dictionary – documents all of the data fields and how they will be implemented, 3) Task Definition for
developer allocation, 4) Test Cases, 5) Site Navigation Structure – navigational hierarchy of the site, 6)
Additional Use Cases, 7) Class Diagrams – define static domain logic models, 8) State Diagrams – define
operational state flows for the application, 9) Interface Boundary Interactions – demonstrate how different
objects and/or third-party systems will interact with exposed APIs that our system would provide, 10)
Architecture Design Layouts – demonstrate how software and hardware interactions and implementations
will operate architecturally for the finished solution.

Start Building via Iterative Development: The development takes place. The Project Manager/Senior
Developer (this person has a developer background, will be doing development on your project, is your direct
contact, and is responsible for your happiness and the success of the project) will allocate most of the work to
developers to perform, and then manage the process. Once completed by the developer, the work will be
reviewed by the Project Manager/Senior Developer at the code level and at the user experience level to
ensure that what was in specifications was delivered. Iterations will take place as needed. Once approved, the
work will be released to you for your review. More iterations may take place based on your feedback. Once
you approve it, it will be uploaded to the production system during the next scheduled release, at which point
all of the new changes to the system will be tested again by the Project Manager/Senior Developer and you.
(The structure above is cheaper and faster than using a single developer to do all the work, and it also allows
for scalability and redundancy in your team, which is important for any system that will evolve and be
supported over time.)

http://www.agilemodeling.com/artifacts/userStory.htm
http://www.stellman-greene.com/2009/05/03/requirements-101-user-stories-vs-use-cases/
http://www.stellman-greene.com/2009/05/03/requirements-101-user-stories-vs-use-cases/

Ensure Customers and Development Team are In Sync via Communication and Expectation Setting: The
processes above were presented in a simplified manner. Here are some of the other components that would
be discussed and worked into the processes:
• Architecture considerations: assessing different options for infrastructure for the site based on usage and

functional requirements
• Change request procedures
• Communication protocols
• Definition of testing procedures: unit testing, regression testing, interface-level testing
• Deployment considerations and process
• Development environment: definition, configuration, staging, and optimization (single-click deployments,

for example)
• Documentation standards: code and user-level (help guides, context-specific help, etc.)
• Iteration definition
• Measuring success: before, during, afterwards qualitatively and quantitatively
• Release management definition
• Security design and considerations
• Stakeholder definition and responsibilities: escalation protocol, sign-off procedure, hierarchy, etc.
• Support plan
• Test plans for security: injection, cross-site scripting, taint-based checks, tests on operational code, etc.
• Ticket closure procedures
• Training plans: roles, mechanisms, validation, etc.
• User experience testing workflows and processes: personas, end user data gathering methods, user

testing, usability testing, etc.
• Validation processes for markup
• Version control usage and technology

Next Steps:

Thank you for considering Up and Running’s services. If you have questions, requests, or feedback, we’d be
pleased to hear from you at any time. We hope to have further conversations with you, with the result being
an approach that we're both comfortable with.

Thank you and Respectfully,

Ian McKilligan

Ian McKilligan
Up and Running Software, Inc.
Cell: 906-281-2627
Email: ian@upandrunningsoftware.com

mailto:ian@upandrunningsoftware.com

Appendix A – Mock-up Examples:

Appendix B – Company & Customer PACT – How We Like to Work:

	About This Document:
	Process Goals – What Determines Success?:
	Implementation and Adaptation per Changing Needs & Constant Improvement:
	A Baseline:
	Next Steps:
	Thank you and Respectfully,
	Appendix A – Mock-up Examples:
	Appendix B – Company & Customer PACT – How We Like to Work:

