UP.AND RUNNING

== SOFTWARE DE

Up and Running Software — The Development Process
Success Determination, Adaptative Processes, and a Baseline Approach

About This Document:

Thank you for requesting more information about Up and Running Software’s development workflows. We
would like to introduce our processes with the following document, as well as present how a software
development process designed for your needs can be arrived at.

The visualization below presents how a software project typically evolves in our experience. This document
focuses in on the Plan, Work, and Communication components of the software project (rows 2 and 3), which
exist to ensure that a system that people like and use is created.

The Simplistic Software Project from Inception to Use

Results in

Opportunities Probiems

And Results in
The Right People
/Prngresmlions, data, ..
3 And Results in
i / :
Smart Work from Festbeck deciions. - Congtant A System People
many People Communication Like (AND Use)
COMMUNICATE. CLARIFY. CREATE. CARE Up and Running Software, Inc.

www.upandrunningsoftware.com

COMMUNICATE. CLARIFY. CREATE. CARE.

The approach we take in presenting this material helps uncover what you consider important in a process and
a project, sets the expectation that processes within a project will almost certainly evolve and adapt as the
context changes and your needs change, and then presents our baseline approach, as well as some other
important project considerations.

If you have feedback or questions about anything as you go through this document, we would be pleased to
hear from you at any time.

Process Goals — What Determines Success?:

The primary goal of any process is results, how YOU determine success. It's important to define explicitly what

success is to you. If you and we don’t do that, then the process will likely not achieve this from the start,

though it’ll likely get there over time with adjustments. Here are the common success criteria for a software

development project, which should be thought through and prioritized:

e Architecture: how well the system is designed for future growth and extensibility.

e Build vs. Buy/Open Source: how much of the code will be purchased or community-derived versus built
from scratch.

e Customer involvement: whether you want to be actively involved, or be involved as little as possible.

e Money (Resources, Cost, Budget): how much money is spent to get the work done.

e Quality: where within the spectrum of proactive-to-reactive quality assurance you wish to be.

e Scope: how much or how little work will be done. This could be described as “quantity of output” and
“depth or quality of output”.

e Speed (Schedule, Time): how fast the work is done.

e Standardization: to what degree the process and/or code should be standardized per your company’s
needs and preferences.

e ..many more.

Scott Ambler, a leader in the agile arena, has presented this concept of competing goals nicely by focusing on
perhaps the three most important goals of a project: scope, resources, and schedule. In one section, he writes,
“Recognize that the iron triangle must be respected. The iron triangle refers to the concept that of the three
critical factors — scope, cost, and time — at least one must vary otherwise the quality of the work suffers.
Nobody wants a poor quality system, otherwise why build it? Therefore the implication is that at least one of
the three vertexes must be allowed to vary. The problem is that when you try to define the exact level of
quality, the exact cost, the exact schedule, and the exact scope to be delivered you virtually guarantee failure
because there is no room for a project team to maneuver.”

Up and Running Software, Inc.

www.upandrunningsoftware.com

Scope
(Features,
Functionality)
Quality
Resources Schedule
(Cost, Budget) (Time)

Copyright 2003-2006 Scott W. Ambler

Source for quote and image: http://www.ambysoft.com/essays/brokenTriangle.htm|

How these are prioritized and assigned relative weights by you is a subjective determination. There is no right
or wrong approach; it’s just a matter of what works better for you. However, it's important to recognize the
competing relationships between these success criteria, for example:

e If you want the project to be done quickly, there are several ways to do that: 1) Increase the number of
team members, 2) decrease the scope, 3) loosen the quality restrictions, 4) use something that exists
already (buy or use open source software), and more. Of course, all of these affect money, quality,
scalability, and more.

e If you want the project to be done cheaply, you'll need to explore if you want a lot done in an “ok” manner
or a smaller amount done really well. What will influence your decisions are quality, scalability, timeline,
and more.

e If you want the system to work seamlessly and be architecturally sound, you’ll need to invest in the design
of the architecture, carefully consider whether the work should be built or bought/found within the open
source community, and plan in senior-level development reviews of all the code throughout the process.
All of this takes time, which increases the timeline and costs in the short-term (in the long-run, the total
cost of ownership (TCO) will be low for a well-designed system, whereas the TCO of a poorly-designed
system may be less for the first year or two, but will cost more, usually multiples more, over the system'’s
total life).

Once the success criteria are known, then your preferred process can be defined. Some examples:
e Speed and quality should take precedence: processes will be defined to move as fast as possible, and
ensure the greatest level of quality is adhered to. This will increase costs.

COMMUNICATE. CLARIFY. CREATE. CARE Up and Running Software, Inc.

www.upandrunningsoftware.com

http://www.ambysoft.com/essays/brokenTriangle.html

e Cost minimization should take precedence: processes will be defined to control costs, which will slow
down the speed of development. This means fewer resources on the project, a minimization of senior
development time (oversight, quality control, etc.), and usually fewer quality control processes, which
means the quality control processes are more reactive than proactive. To further reduce costs, it’s
recommended that you do whatever you can yourself, such as the design work and interface testing (we
can show you how).

e Quality is of the utmost importance (healthcare software, e-commerce software dealing with transactions
and sensitive consumer data, missile defense software, etc.): processes will be designed to ensure testing
of the software in a formalized manner at all levels of the software development process. This will
increase the costs, but it’s worth it if the costs of errors downstream are not ethically and/or financially
acceptable.

Implementation and Adaptation per Changing Needs & Constant Improvement:

At this point, your preferred process can be implemented to support your success criteria.

Just as software development itself is iterative and constantly improving, we believe the process should adapt
based on your existing processes, stakeholder preferences, business goals, lessons learned, success criteria,
and new or changed project considerations.

"Notice that the stiffest tree is most easily cracked,
while the bamboo or willow survives by bending

with the wind®

- Bruce Lee

We think it'd be a bit arrogant of us to think we have the best way.

You and your organization have leamned a lot over the years, and we see no reason to
change it if it's working. (If it's not, we will suggest methodologies)

What matters to us is your happiness and the success of the project; how we get there
is a component, and only just a component.

We adapt to your way of doing things, or we can provide a way to approach the project
that works for us. How we approach it is per your preference.

Most things will go really well in a project, but there will be issues, questions, and concerns, which is entirely
normal. In the ideal business relationship, we can talk through issues candidly and openly, fix the issues, and

COMMUNICATE. CLARIFY. CREATE. CARE Up and Running Software, Inc.
WWW.UDandrUnnlngSOﬂWare.COm

r UP.AND RUNNIN
.:'u;?,‘

/A

implement long-term process updates so that the issues are avoided in the future. (Related to this topic, we
like the approach for a great vendor and customer relationship that’s presented in Appendix B.)

A Baseline:

We do have a baseline software development process that we recommend to customers who don’t have their
own processes in place, or would like to learn what we use. We should mention that we adapt this to each
customer’s needs so what is presented here may be more than is needed for all projects.

"We think projects B0l bagreeing on what needs to
be done, doing what needs gne, and ensuring what
was done waorks. This is by NO"MEaNs'a linear process; it's
iterative, full of communication, and adaptive.”

- lan McKiligan, CED

We're often asked about our methodology: we prefer to think of it as a way of thinking.

Customer happiness is putting the user first.

We approach our development in an agile fashion, focusing on customer and user feedback and invalvernent, user interfaces,
and user interaction, captured in the form of user stories and workflows. Development follows definition of what the user wants.
Simply stated. we put the user first, and we don't consider a project successful until you do, which we think is when your
users do.

Experience, earned through study and application.

We're not trying to be simplistic about this. We've been there. We have team members who've done project management for
Fortune 50 companies, led and operated initiatives under IS0 X/CMMI/ITIL/more standards, managed and performed
user-hased contextual inquiry and uncovery/discovery, studied project management (PM) formally in college and via PMP (a
candle's flame to the sun, considering the sun to be experience), and have used most PM tools out there, even having created
some of our own, including a Kanban board and a "pure” PM, process-driven system.

What doesn't good communication and accurately-focused action solve?

We think a project's success is directly proportional to the amount of good communication and good action that take place.
This means talking about money, the realities of the project. and what's working or not in an open, transparent, and timely
manner. This means acting efficiently after asking good questions to define issues and next steps.

We'll first present a couple of workflows that we hope indicate broadly how we approach software
development.

COMMUNICATE. CLARIFY. CREATE. CARE Up and Running Software, Inc.

www.upandrunningsoftware.com

UP AND RUNNING

SOFTWARE

Software Development, Defined Simply

m

Develop

Deploy when done, and
W move onto the next feature

Software Development, One Way of Defining it Complexly

Phases Phase1 ‘ Phase2 ‘ Phase3 ‘ PhaseN ‘

Features|ri1.1|P1.2|P13

Each Feature will be Chunked

Chunks+ Chunk 1.1.1|Chunk 1.1.2 |Chunk 1.1.3| Chunk 1.1.N ‘ v
SDLC/Chunk Each chunk will follow this cycle
o Scope Design Implement Test

(store o Solton Desin d &I
after

scope) Chockis Choct

Train Deploy

EOP (after
each phase)

‘ 1 - N lterations

COMMUNICATE. CLARIFY. CREATE. CARE Up and Running Software, Inc.

www.upandrunningsoftware.com

‘,

The following dives into more detail about some critical aspects of the process.

Know Where You’re Going via Images / Pictures / Mock-ups / Wireframes / Low-fidelity User Interfaces
(“mock-ups” from here on out): The “a picture is worth a thousand words” idiom applies here. The mechanism
for this can be quite simple; that is, the medium does not matter. We and our customers have done these by
hand on paper or white board, and then images were shared electronically by taking digital pictures of the
results or by scanning them in. If you prefer to mock up the designs using software, anything that can draw
will work, including software that most people have for creating presentations, documents, and custom
graphics. For those that want software designed for the purpose, solutions such as Balsamiq, Azure,
OmniGraffle, and Visio are popular ones. Please see Appendix A for example mock-ups.

Here are some notes on this important process:

e Interms of the value created for the time involved, we consider this step to be one of the most valuable in
the software development process. It will save you time, it will reduce ambiguity, and it will save you
money. We have familiarity with Business Requirement Documents (BRDs), and though useful, they can
be replaced entirely by mock-ups. Focusing on one output reduces overhead by simplifying the process
and focusing attention. As an example, in some cases, a mock-up can replace tens of pages in a BRD.

e Annotating the images using “call-outs” is really helpful. They can reference other documents if needed
too. However, the goal should be to include all aspects of the business requirements in the interfaces
themselves. This will save time in development and validation of the development results.

e Run the interfaces by representative users and colleagues to see if they intuitively make sense to them.
Have them use the interfaces as if it was a real system. In most systems and in most cases, people don’t
seem to read the help guides so provide little to no help text and no introduction, and observe what the
users can do on their own. To apply another idiom, “measuring twice and cutting once” sure saves a lot of
money; that is, downstream changes are a lot more expensive than defining things well upfront. (This
process could be considered as a form of “paper prototyping”.)

e If you have final designs created, then we’re past the point of creating mock-ups. If you haven’t done the
paper prototyping process though, you might consider it. Though you’ve invested in the high-fidelity user
interfaces, it’s still cheaper to change things now versus later.

e If you don’t want to create mock-ups or don’t have time to, that’s no problem, we can do them based on
your business requirements. If you prefer to not do this as part of the process, we understand; we really
want to approach the work how you think it should be approached.

e Sometimes there are workflows that are not obvious by looking at the mock-ups. Here are some steps
that can be taken at this point:

o Creating a flowchart: any flowcharting approach will work. If you know a formal process for this,
by all means, please put it to work. However, if you don’t, that’s ok; you’re going to provide
tremendous value and definition just by writing out the workflows however you want to. Googling
“flowchart how to” or “flowchart examples” will help you to do this easily.

COMMUNICATE. CLARIFY. CREATE. CARE Up and Running Software, Inc.

www.upandrunningsoftware.com

o Documenting user stories (simply tell the story of how the system will be used from the user’s
perspective, keeping in mind the user’s specific role). Scott Ambler presents how to create and
use user stories well here: http://www.agilemodeling.com/artifacts/userStory.htm. Here’s

another helpful resource: http://www.stellman-greene.com/2009/05/03/requirements-101-user-

StOfiES-VS-USE-CaSGS/

e How you organize and manage these mock-ups is your decision, and usually depends on the complexity of
the system. We’'ve seen people use a file structure, a ticket system, the modeling software itself, and a
classification system. We prefer to use a ticket system so that everything that relates to a topic is
organized within and easily accessible from that ticket.

Communicate with Developers via Functional Specifications: At this point, we will create functional
specifications if needed, which are the specifications the developers use to implement the site. This serves the
following purposes:

e It validates the mock-ups in that a detailed review of them is made, and detailed questions are asked if any
ambiguity exists. This may cause more iterations of the mock-up process to happen, which is great
because that’ll save you money by correcting issues early in the process before actual development occurs.

e It produces documentation that developers will use to implement the site. Example outputs, which are
produced as needed: 1) Entity Relationship Diagram — presents all of the database relationships, 2) Data
Dictionary — documents all of the data fields and how they will be implemented, 3) Task Definition for
developer allocation, 4) Test Cases, 5) Site Navigation Structure — navigational hierarchy of the site, 6)
Additional Use Cases, 7) Class Diagrams — define static domain logic models, 8) State Diagrams — define
operational state flows for the application, 9) Interface Boundary Interactions — demonstrate how different
objects and/or third-party systems will interact with exposed APIs that our system would provide, 10)
Architecture Design Layouts — demonstrate how software and hardware interactions and implementations
will operate architecturally for the finished solution.

Start Building via Iterative Development: The development takes place. The Project Manager/Senior
Developer (this person has a developer background, will be doing development on your project, is your direct
contact, and is responsible for your happiness and the success of the project) will allocate most of the work to
developers to perform, and then manage the process. Once completed by the developer, the work will be
reviewed by the Project Manager/Senior Developer at the code level and at the user experience level to
ensure that what was in specifications was delivered. Iterations will take place as needed. Once approved, the
work will be released to you for your review. More iterations may take place based on your feedback. Once
you approve it, it will be uploaded to the production system during the next scheduled release, at which point
all of the new changes to the system will be tested again by the Project Manager/Senior Developer and you.
(The structure above is cheaper and faster than using a single developer to do all the work, and it also allows
for scalability and redundancy in your team, which is important for any system that will evolve and be
supported over time.)

COMMUNICATE. CLARIFY. CREATE. CARE Up and Running Software, Inc.

www.upandrunningsoftware.com

http://www.agilemodeling.com/artifacts/userStory.htm
http://www.stellman-greene.com/2009/05/03/requirements-101-user-stories-vs-use-cases/
http://www.stellman-greene.com/2009/05/03/requirements-101-user-stories-vs-use-cases/

a /P ANI

Ensure Customers and Development Team are In Sync via Communication and Expectation Setting: The

processes above were presented in a simplified manner. Here are some of the other components that would

be discussed and worked into the processes:

e Architecture considerations: assessing different options for infrastructure for the site based on usage and
functional requirements

e Change request procedures

e Communication protocols

o Definition of testing procedures: unit testing, regression testing, interface-level testing

e Deployment considerations and process

e Development environment: definition, configuration, staging, and optimization (single-click deployments,
for example)

e Documentation standards: code and user-level (help guides, context-specific help, etc.)

e [teration definition

e Measuring success: before, during, afterwards qualitatively and quantitatively

e Release management definition

e Security design and considerations

e Stakeholder definition and responsibilities: escalation protocol, sign-off procedure, hierarchy, etc.

e Support plan

e Test plans for security: injection, cross-site scripting, taint-based checks, tests on operational code, etc.

e Ticket closure procedures

e Training plans: roles, mechanisms, validation, etc.

e User experience testing workflows and processes: personas, end user data gathering methods, user
testing, usability testing, etc.

e Validation processes for markup

e Version control usage and technology

Next Steps:

Thank you for considering Up and Running’s services. If you have questions, requests, or feedback, we’d be
pleased to hear from you at any time. We hope to have further conversations with you, with the result being
an approach that we're both comfortable with.

Thank you and Respectfully,

7Mv e K@Z@m

lan McKilligan

Up and Running Software, Inc.

Cell: 906-281-2627

Email: ian@upandrunningsoftware.com

COMMUNICATE. CLARIFY. CREATE. CARE Up and Running Software, Inc.
WWW.UDandrUnnlngSOﬂWare.COm

mailto:ian@upandrunningsoftware.com

()P VI E/N

Appendix A — Mock-up Examples:

— Search Criteria Clicking on a letter brings up all . -_ .
By Last Name ABCDEFGHIJKLMN[XPARSTUKIWIxYZ contacts with a last name that starts
with that letter. Note some characters Number of results per page
Search | boclean search fleld | appear as checkboxes, they should be should default to 20. This
thelr respective letters. should be controlled by a
Filter by organization: |Select an organization... | ¥ EEE—— -) config variable. |
All contacts that have had activity with |L_:| days. " N
All contats that have had NO activity within |15 days and aren't closed. _—_ N
When Advanced Search Is clicked, -—_
Sales progression step: | Select a sales progression... |¥] the link goes away and the form A i
M‘ PR clickable to stort the
| Search I | Reset Search Form I | +abid of |
— Search Results — ! |
First Prev1 2 3 4 5 Next Last
First Name | Last Name | Organization | Email Phone Sales Progress | Last Activity
Alina Barns CompanyX alina@companyx.com 9999999 | New Lead 08/24/2009 ﬁ
Aldan Jones CompanyX idanb@ companyx.com 999999 Estimation 08/27/2009
Alex Johnson CompanyX lexm@companyXx.com 999999 | Estimation 08/27/2009
First Prev 1 2 3 4 5 Next Last
COMMUNICATE. CLARIFY. CREATE. CARE. Up and Running Software, Inc.

www.upandrunningsoftware.com

UP AND RUNNING

SOFTWARE D¢

Payment System
Retrieve Hours -
Name Emall Rate/Salary ‘Adjustment Final Total Notes Action Results of fhé sinaeAl et
John Smith john@aol.com 35 E I [Send | success here. Either through 4 single
E:B/- - Send click or if all are processed
R e / E_]o|= ek bl
Emails are L

Nancy Jo cy@aol o :

Clicking on the mailto g reduced because of

name, goes fo the hyperlinks e —

SEEicresrecd wil| Clicking the edit icon will “m:;l“":ﬂ“*" " _

do a popup to add a note 9 y iF subtotal or When licked,
— ‘Shown only when running in sandbox modj ° Y adjustment are changed. Tt Clicking send all, processes all a button Is cl
for the adjustment A that hauiniiE e I 1#'s disabled until the
can be manually modified o operation finishes
too. yet. If an operation succeeds or
T— failes, that counts as sending and
Summary) won't be processed by send all, N
-$1,564
This s displayed in place of the
green difference when the payment The payment total and different
total Is > than the payoneer are updated with) &
bt the final total fields in the main This is retrieved by an API call roPayon«j
list are adjusted
Tags —
Peter Hanson a9
eter@upandrunningsoftware .com vIP @
906-281-1178 Add Tag

lInfo \l Acfivify\lFollow-ups\lSnles Progression\

— Filter
o R =]
Filter legend tag is
Type: [an L] clickable to collapse the
Keywords: Ii‘r will search both in the title and description ' fieldset
— Activity

New | Collapse All | Expand All
Phone 01/15/2009 - Sync up meeting about DB - Files: O

By default, all activity is
shown for the contact

Reviewed the quote and validated all assumptions, Need to
update the estimate based on questions asked and answered

Blah blah

Activity uses an accordian control, so you can
quickly scroll through all activity. Clicking on a
header expands/collapses that section.
Multiple sections can be open at once.

File: UAR Estimate - XYZ Corp - Drupal Site.xls

Email 01/07/2009 - Database structure - Files: 1
Email 01/05/2009 - MOckups design - Files: 0

Email 01/04/2009 - Re: Database Design - Files: 1

Up and Running Software, Inc.
www.upandrunningsoftware.com

COMMUNICATE. CLARIFY. CREATE. CARE.

OFTWARE DEVELOPMENT

Appendix B — Company & Customer PACT — How We Like to Work:

Tie
COMPANY - CUSTOMER

&= PACT &5

THE CHALLENGE
‘We, customers and companies alike, need to trust the people with whom we do business,
Customers expect honest, straightforward interactions where their voices are heard.
Companies work to inspire brand loyalty and deliver satisfaction while trying to understand
their customers better. It is evident that we all have a cruocial ke-and resy abality-in
transforming the adversarial tone that too often dominates the ¢ experience.

A CALL FOR SHARED RESPONSIBILITY
Along with open, authentic communication comes the mutual responsibility to malke it work.
As each of us is both a customer and an employee, we share in the rewards and challenges
of dor. By adopting th five practical measures, we can together realize a fund 1
shift in our business relationships:

COMPANIES

1 Be human. Use a respectful, con-
- verational voice, avoid scripts and

mever use corporate doublespeak.

CUSTOMERS

2 Encourage employees to use their
-] real nemes and use a personnl
touch.

3 Anticipate that problems will
.o occur, and set clear, public expec-
tations in advance for how you will

address (and redress) issoes. competenty address issues.
4 Cultivate a public dialogue with Share issues directly, or through a
- customers so they feel they are forum where the company has an
being heard and to demonstrate opportunity to respond, so it can

your accountability.

3.

Demonstrate your good intentions
by speaking plainly, carncstly, and
candidly with customers about

Give companics the benefit of the
doubt, and be open to what they
have to say.

problems that arise.

OUR PACT
By working together in these ways, people build long-term relationships that lead to trust,
strong communities, and sustainable businesses. We, as companies and < s, Support
this call for change.

Source:

SUPPORT THE PACT AT HT TP/ /CCPACT.COM I

Up and Running Software, Inc.
www.upandrunningsoftware.com

COMMUNICATE. CLARIFY. CREATE. CARE.

	About This Document:
	Process Goals – What Determines Success?:
	Implementation and Adaptation per Changing Needs & Constant Improvement:
	A Baseline:
	Next Steps:
	Thank you and Respectfully,
	Appendix A – Mock-up Examples:
	Appendix B – Company & Customer PACT – How We Like to Work:

