‘,

Agile Methodology

Presented to Jivko Sinapov’s Class on
4/25/14 (HCI 573X: Web Applications)

Peter J. Hanson, CTO



-
L
o




We Build Software

Est. 1995

Virtual

Growing

: | ‘.,-,: e\ j I“.\..; ")
gur engineers trying to design
\ ~



Clients (some)

simoico: I

epsilon) ¢n

— -

- ¢ / "
e _H‘ BETA \ .
m ARYBoroiis | | \X¥ Voices.con

{ftr}richrelevance

&Wﬂ' fwfb’ }N(z/('& beller y(({'/eﬁj .



Tech (some)
Y~ I Drupal

CotichDB

Open Soug ecarmers ORACLE ﬁ

django

? S'c(riiclf Server
[@ Microsoft‘*
NET  B¥NGuLARSS

@WORDPRESS & JQUEIV &

amazon

webservices™




Tech (some)

ey
\ | @ python

M django

by Google &

HTML [ =% ¥
E+E
eeeeeeeeeeeeeeeeeee

amazon .@5

@WORDPRESS




What Is Agile?

e Methodology
Results-focused Approach

* Impacts
Individuals/Interactions
Working Software
Customer Collaboration
Handling Change



Why Agile?

How do software development paradigms compare?

Comparing Delivery Paradigms I
Product Quality. When it comes to the quality of the system ot °
deliver eq, what Is your experience regarding the effectiveness Prodisct Ousty
of [paradigm] software development teams?
Stakeholder Value. When it comes to ability to deliver a
solution which meets the actual needs of it's stakeholders, what Stakcholder Yohie BLean
is your expenence regarding the effectiveness of [paradigm] B Agile
software development teams? B [cafive
ROL When it comes to effective use of return on investment mll:F O Ad-hes
(RO, what is your experience regarding the effectiveneass of O Tragificnal
[paradigm] software development teams?
Time/Schedule, When it comes to time/schedule, what is vour Ui Ze g2 L2

experence regarding the effectiversess of [paradigm) software
development teams? =30 =10 1.0 a0 a0 o

_/

Source: 2013 IT Project Success Rates Survey, Ambysoft.com/surveys/success201 3. html SCOTT AMBLER <
Copyright 2014 Scott W, Ambler + Associates + Associates ~<




Agile Manifesto

“We are uncovering better ways of developing software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over Processes and tools
Working software over Comprehensive documentation
Customer collaboration over Contract negotiation
Responding to change over Following a plan

That is, while there is value in the items on the right, we value the items on the left more.

Kent Beck James Grenning Robert C. Martin
Mike Beedle Jim Highsmith Steve Mellor
Arie van Bennekum Andrew Hunt Ken Schwaber
Alistair Cockburn Ron Jeffries Jeff Sutherland
Ward Cunningham Jon Kern Dave Thomas”
Martin Fowler Brian Marick

© 2001, the above authors. This declaration may be freely copied in any form, but only in its entirety through this notice.

Sources: http://en.wikipedia.org/wiki/Agile_software_development C/O http.//agilemanifesto.org/principles.html



Agile Principles

“Customer satisfaction by rapid delivery of useful software

Welcome changing requirements, even late in development

Working software is delivered frequently (weeks rather than months)
Working software is the principal measure of progress

Sustainable development, able to maintain a constant pace

Close, daily cooperation between business people and developers
Face-to-face conversation is the best form of communication (co-location)
Projects are built around motivated individuals, who should be trusted

0 0 NS0 R wWNRE

Continuous attention to technical excellence and good design
10.Simplicity—the art of maximizing the amount of work not done—is essential
11.Self-organizing teams

12.Regular adaptation to changing circumstances”

Sources: http://en.wikipedia.org/wiki/Agile_software_development C/O http.//agilemanifesto.org/principles.html|



Customers/Change

"No plan survives contact with the enemy”
- Helmuth von Moltke

“In preparing for battle | have always
found that plans are useless, but planning
is indispensable.””

- Dwight D. Eisenhower



Custome

Ilterations
- Time boxed
- Allows adaptation




Customers/Change

e Customers are part of the team
 Frequent feedback
e Know what to decide



Customers/Change

Design
- QGuidelines
- Not dictatorial



Customers/Change

e Keep it releasable

- Stable

- Release at the drop of a hat
 [ntegrate regularly

- Don’t drift



Customers/Change

Set up your processes early
- Testing harness
- Build process
- Continuous integration




Communication

e Listen to the users

- Get their feedback

- Take complaints seriously
 “l'am not my user”



Communication

Standups
e Keep them quick, <= 15 minutes
e Stand up, chairs are comfy
e Agenda:
- What | did yesterday
- What I’'m doing today
- Any blockers
 Pigs only, no chickens



Communication

Code Reviews
- Can help catch a number of issues
- Verify design
- Coding style/conventions




Working Code

Clean/Organized Code
- Easier to read
- Less brittle
- Example



Working Code

Clean/Organized Code

R I IR S 5 I I N Y I e
open(Q,$0);while(<Q>){if(/"#(.*)S/){for(split('-',S1){Saq=0;for(split){s/\|/:../xg;s/:/ ../8;
SQ=5_?length:S_;5q+=5q?5Q:5Q*20;}print chr(Sq);}}}print™\n";

A I S e N I B R N S R R Y



Working Code

Clean/Organized Code

peteh@macbookpro-4 cat test.pl

SRS B BN B ERE - BN B B ) B S B

open(Q, $0) ;while(<Q>){if (/M (. *)$/){for(split("'-",$1)){$g=0; for(split){s/\|/:.:/xg;s/:/../g;
$0=$_?1ength:$_;$9+=$q7$Q: $Q0*20; }print chr($q);}}}print"™\n";

O I N B N B B B N I I B R B |

peteh@macbookpro-4 perl test.pl

The Perl Journal
peteh@macbookpro-4 ]




Working Code

Clean/Organized Code

This easier?
print "The Perl Journal®;



Working Code

Names
e |mportant
- Ease of reading
- Self documents
- No chasing down code
e Example



Working Code

Names

Stemp = foobar(4);

Sa=Sb."".Sc;



Working Code

Names

Sroot_number =square_root(4);

Sfull name = Sfirst name . " " .
Slast name;



Working Code

Names

Don’t abbreviate names

What's easier? Sreport or Srprt
Or
LibraryStorageSystem or LbryStrSys

“Why, Eckhardt, you oughta think about the future.” — The Joker, Batman



Working Code

Documentation
- Code should document itself
- Supplement with comments
- Maintain comments or remove
- Code is the truth



Working Code

Design Principles

Be SOLID, not STUPID



Working Code

SOLID
- Single Responsibility Principle
- Open/Closed Principle
- Liskov Substitution Principle
- Interface Segregation Principle
- Dependency Inversion Principle



Working Code

STUPID
- Singleton
- Tight Coupling
- Untestability
- Premature Optimization
- Indescriptive Naming
- Duplication



Working Code

Singleton
- Anti-pattern
- Global scope hack
- Hard to test



Working Code

Singleton

__construct() {

log: :getInstance(); ust
g—>record("instantiated person");

person
] 1 __construct(log $log
;—>rec0rd("1nstantlated person")




Working Code

Tight Coupling
Concrete implementations

class person {

blic function _ construct() {
$this—>db = new Database():
$this->1log = log::getInstance();
$this—>address = new Address():




Working Code

Untestability
- Hard to test or no tests
- Almost always a symptom of tight
coupling



Working Code

Premature Optimization
- Don’tdoit
- If you are an expert, don’t do it yet
- Cost with no benefit

“Premature optimization is the root of all evil.”
- Donald Knuth



Working Code

 |[ndescriptive Naming
- Covered this earlier
 Duplication
- Don’t Repeat Yourself (DRY)
- One source for things



Working Code

Single Responsibility Principle

A class should never have more than
one reason to change



<?php

namespace Model;

interface UserInterface

{
public
public

public
public

public
public
public

public
public
public
public

function
function

function
function

function
function
function

function
function
function
function

setId($id);
getId();

setName($name);
getName();

setEmail(%email);
getEmail();
getGravatar();

findById(%id);
insert();
update();
delete();

Working Code



Working Code

<?php
namespace Mapper;
use ModelUserInterface;

interface UserMapperInterface

{
public function findById(%id);
public function insert(UserInterface fuser);
public function update(UserInterface fuser);
public function delete(%id);



Working Code

<?php
namespace Model;

interface UserInterface

{
public function setId(%id);

public function getId();

public function setMName(%name);
public function getName();

public function setEmail(%email);

public function getEmail();
public function getGravatar();

http://www.sitepoint.com/the-single-responsibility-principle/



http://www.sitepoint.com/the-single-responsibility-principle/

Working Code

Open/Closed Principle

Open for extension, closed for
modification



[ IS = V7% S

-]

Working Code

class Image

private 5fPath = null;

public function  construct($fPath
Sthis->fPath = $fPath;
private function CetFilekExtenticn|

SstrFPileName = basename (Sthis->fPath);

S5strExtension = array pop (explode (".", SstrfileName

SstrExtension;

public function SendTocBrowser |
SstrFileExtenticon = Sthis->GetFileExtention () ;

SstrFileExtention

'\gif]’
header ("Content-type: image/gif");
i
‘_ltjg’
header ("Content-type: image/jpg");:

SstrFileContent = file get contents (Sthis->fPath);

echo S$strFileContent;

die();



[0 = O S I A

|

Working Code

abstract eclass Anlimage
public function construct($fPath
Sthis->fPath = SfPath;

public function SendTocBrowser |

Sthis->SendFileHeader () ;

$strFileContent = file get contents ($this->fPath);
echeo $5strFileContent;
die():

public abstract funection SendFileHeader();



[ L S L

|

Lo TN 5 o (Rt O S I

|

Working Code

class Jpglmage extends Anlmage
public function Sendi'ileHeader|

header ("Content-type: image/Jpg"):

class Ciflmage extends Anlimage
public function SendiileHeader |

header ("Content-type: image/gif");

http://binary.freeperspective.net/countzero/2009/02/13/open-close-principle-object-orientated-design-in-php/



Working Code

Liskov Substitution Principle

Objects can be replaced with sub
classes without altering the
correctness of that program



Working Code

lass Person {

Inc __construct() {
s—=addresses = array();

on getAddresses() {
1is=>addresses;

lass Employee extends Person {

ic functior cnnftrULt{h {
his—=addresses = new AddressList();

construct({Person Sperson)

n gEtFqutAddFESE{J {
c—=person—>=getAddresses():




Working Code

Interface Segregation Principle

No client should be forced to depend
on methods it does not use



Working Code

interface Vehicle {
public function startEngine()
nction accelerate():
tion brake():
tion lightsOn()

ion signallLeft():
ction signalRight();
tion changeGear($gear
-ion stopRadio():

tion ejectCD():




Working Code

SpeedControlq
function startEngine()
on accelerate()
ion brake()
n changeGear(sgear]

rerface Signaling {

LightsOn();
ion signallLeft()
» signalRight();

terface RadioCD {
iblic function gtﬂpﬂadiﬂ{}-
function ejectCD()

http://code.tutsplus.com/tutorials/solid-part-3-liskov-substitution-interface-segregation-principles--net-36710



Working Code

Dependency Inversion Principle
- High-level modules should not
depend on low-level modules. Both
should depend on abstractions.
- Abstractions should not depend
upon details. Details should
depend upon abstractions.



Working Code

class Test extends PHPUnit_Framework_TestCase {
function testItCanReadAPDFBook() {
$b = new PDFBook(};
$r = new PDFReader(ib);

$this->assertRegExp("/pdf book/', $r->read());

}

class PDFReader {
private $book;
function __construct(PDFBook %book) {

$this->book = $book;
}

function read() {
return 3this->book->read();
}

}

class PDFBook {

function read() {
return "reading a pdf book.";
}



Working Code

Uses

| PDFReader > PDFBook




Working Code

class Test extends PHPUnit_Framework_TestCase {
function testItCanReadAPDFBook() {
$b = new PDFBook();
$r = new EBookReader($b);

$this->assertRegExp(" /pdf book/', Yr-=read());

}

class EBookReader {
private $book;
function __construct(PDFBook $book) {

$this->book = $book;
}

function read() {
return $this->book->read();
}

}

class PDFBook {

function read() {
return "reading a pdf book.";
}



Working Code

T Uses

EBookReader > PDFBook




Working Code

| Uses =i

EBookReader > EBook

(A

Implemenfs

PDFBook




orking Code

interface EBook {
function read();
}
class EBookReader {
private 3$book;
function __construct(EBook $book) {

$this->book = $book;
}

function read() {
return $this->book->read();
}

}

class PDFBook implements EBook {

function read() {
return "reading a pdf book.";
}

}

class MobiBook implements EBook {

function read() {
return "reading a mobi book.";
}

http://code.tutsplus.com/tutorials/solid-part-4-the-dependency-inversion-principle--net-36872



Tools/Processes

Utilize Version Control
- Git/Subversion
- Usage Strategy



Tools/Processes

Git Release Strategy

tag: release-1.0 tag: release-1.1 tag: release-2.0 tag: release-2.1

Create release-1 branch / / » release-1 Create release-2 branch / / - release-2

-

Merge to
Master

Merge to
Master

Merge to
Master

Merge to
Master

Master

Merge to
Master

Merge to
Master

Merge to
Master

Create feature Create feature Create feature Create feature Branch didn't work out, is discarded
branch branch branch branch
Time =

Source: Peter Hanson & Associates — Share with the World Licensing : )



Tools/Processes

Centralize Knowledge/Ticketing
- Tracks information
- Common point of exchange
- JIRA/Redmine/Trac/Basecamp

(maybe)



Tools/Processes

e (Continuous Integration
e Automation

- Testing

- Builds



Summary

There is a lot here
Use what you’d like

Use at the time of need based on
what will help you the most

Keep learning: read/apply,
read/apply, ...



Recommended Reading

Books

- The Pragmatic Programmer: From Journeyman to Master,
Andrew Hunt & David Thomas, ISBN-13: 978-0201616224

- Practices of an Agile Developer: Working in the Real
World, Venkat Subramaniam & Andrew Hunt, ISBN-13:
978-0974514086

- Clean Code: A Handbook of Agile Software
Craftsmanship, Robert C Martin, ISBN-13: 978-0132350884

- The Clean Coder: A Code of Conduct for Professional
Programmers, Robert C Martin, ISBN-13: 978-0137081073



Sites

Recommended Reading

http://www.phptherightway.com/

Google: “Scott Ambler and agile”
Google: “how to communicate effectively at work”

There are some good blogs, and | think they are helpful. To
optimize your learning, I'd recommend the books and
applying though if possible. The blogs may feel good (like
you’re doing something) and are useful reminders, but
they are not as effective as putting your time in with the
books and at the keyboard.


http://www.phptherightway.com/

Take Action

* Pick one book. Read it, apply it.

 Build something that you care about
(create a business, help a non-profit,
make a family site, etc.).

Learn with a purpose!
e Assess your current projects. Are there
specific pain points? What practices here
could help those? Apply the concept.



My Contact Information

e Skype (preferred): uar pete.hanson
e Phone: 906-281-1178
* Email: Peter@upandrunning.com

| will not write any code for you because that
could negatively affect your learning. If you
want a sounding board though, I'd like to
help and let’s have a Skype call. Open door.



mailto:Peter@upandrunning.com




	Agile Methodology�Presented to Jivko Sinapov’s Class on �4/25/14 (HCI 573X: Web Applications)
	Plan
	About Us
	Clients (some)
	Tech (some)
	Tech (some)
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	My Contact Information
	Logout

