
Agile Methodology
Presented to Jivko Sinapov’s Class on 

4/25/14 (HCI 573X: Web Applications)

Peter J. Hanson, CTO



Plan



We Build Software

Est. 1995

Virtual

Growing

Our engineers trying to design

About Us



Clients (some)



Tech (some)



Tech (some)



What Is Agile?

• Methodology
Results-focused Approach

• Impacts
Individuals/Interactions
Working Software
Customer Collaboration
Handling Change



Why Agile?



Agile Manifesto
“We are uncovering better ways of developing software by doing it and helping others do it. 
Through this work we have come to value:

Individuals and interactions over Processes and tools
Working software over Comprehensive documentation
Customer collaboration over Contract negotiation
Responding to change over Following a plan

That is, while there is value in the items on the right, we value the items on the left more.
Kent Beck James Grenning Robert C. Martin
Mike Beedle Jim Highsmith Steve Mellor
Arie van Bennekum Andrew Hunt Ken Schwaber
Alistair Cockburn Ron Jeffries Jeff Sutherland
Ward Cunningham Jon Kern Dave Thomas”
Martin Fowler Brian Marick

© 2001, the above authors. This declaration may be freely copied in any form, but only in its entirety through this notice.

Sources: http://en.wikipedia.org/wiki/Agile_software_development   C/O   http://agilemanifesto.org/principles.html



Agile Principles
1. “Customer satisfaction by rapid delivery of useful software
2. Welcome changing requirements, even late in development
3. Working software is delivered frequently (weeks rather than months)
4. Working software is the principal measure of progress
5. Sustainable development, able to maintain a constant pace
6. Close, daily cooperation between business people and developers
7. Face-to-face conversation is the best form of communication (co-location)
8. Projects are built around motivated individuals, who should be trusted
9. Continuous attention to technical excellence and good design
10.Simplicity—the art of maximizing the amount of work not done—is essential
11.Self-organizing teams
12.Regular adaptation to changing circumstances”

Sources: http://en.wikipedia.org/wiki/Agile_software_development   C/O   http://agilemanifesto.org/principles.html



Customers/Change

"No plan survives contact with the enemy”
- Helmuth von Moltke

“In preparing for battle I have always 
found that plans are useless, but planning 
is indispensable.””

- Dwight D. Eisenhower



Customers /Change 

Iterations
- Time boxed
- Allows adaptation



Customers/Change

• Customers are part of the team
• Frequent feedback
• Know what to decide



Customers/Change

Design
- Guidelines
- Not dictatorial



Customers/Change

• Keep it releasable
- Stable
- Release at the drop of a hat

• Integrate regularly
- Don’t drift



Customers/Change

Set up your processes early
- Testing harness
- Build process
- Continuous integration



Communication

• Listen to the users
- Get their feedback
- Take complaints seriously

• “I am not my user”



Communication
Standups

• Keep them quick, <= 15 minutes
• Stand up, chairs are comfy
• Agenda:

- What I did yesterday
- What I’m doing today
- Any blockers

• Pigs only, no chickens



Communication

Code Reviews
- Can help catch a number of issues
- Verify design
- Coding style/conventions

Don’t be this guy



Working Code

Clean/Organized Code
- Easier to read
- Less brittle
- Example



Working Code

Clean/Organized Code
#:: ::-| ::-| .-. :||-:: 0-| .-| ::||-| .:|-. :||
open(Q,$0);while(<Q>){if(/^#(.*)$/){for(split('-',$1)){$q=0;for(split){s/\|/:.:/xg;s/:/../g;
$Q=$_?length:$_;$q+=$q?$Q:$Q*20;}print chr($q);}}}print"\n";
#.: ::||-| .||-| :|||-| ::||-| ||-:: :|||-| .:|



Working Code

Clean/Organized Code



Working Code

Clean/Organized Code

This easier?
print "The Perl Journal";



Working Code

Names
• Important

- Ease of reading
- Self documents
- No chasing down code

• Example



Working Code

Names

$temp = foobar(4);

$a = $b . " " . $c;



Working Code

Names

$root_number = square_root(4);

$full_name = $first_name . " " . 
$last_name;



Working Code

Names

Don’t abbreviate names
What’s easier? $report or $rprt

Or 
LibraryStorageSystem or LbryStrSys

“Why, Eckhardt, you oughta think about the future.” – The Joker, Batman



Working Code

Documentation
- Code should document itself
- Supplement with comments
- Maintain comments or remove
- Code is the truth



Working Code

Design Principles

Be SOLID, not STUPID



Working Code

SOLID
- Single Responsibility Principle
- Open/Closed Principle
- Liskov Substitution Principle
- Interface Segregation Principle
- Dependency Inversion Principle



Working Code

STUPID
- Singleton
- Tight Coupling
- Untestability
- Premature Optimization
- Indescriptive Naming
- Duplication



Working Code

Singleton
- Anti-pattern
- Global scope hack
- Hard to test



Working Code

Singleton



Working Code

Tight Coupling
Concrete implementations



Working Code

Untestability
- Hard to test or no tests
- Almost always a symptom of tight 

coupling



Working Code

Premature Optimization
- Don’t do it
- If you are an expert, don’t do it yet
- Cost with no benefit

“Premature optimization is the root of all evil.”
- Donald Knuth



Working Code

• Indescriptive Naming
- Covered this earlier

• Duplication
- Don’t Repeat Yourself (DRY)
- One source for things 



Working Code

Single Responsibility Principle

A class should never have more than 
one reason to change



Working Code



Working Code



Working Code

http://www.sitepoint.com/the-single-responsibility-principle/

http://www.sitepoint.com/the-single-responsibility-principle/


Working Code

Open/Closed Principle

Open for extension, closed for 
modification



Working Code



Working Code



Working Code

http://binary.freeperspective.net/countzero/2009/02/13/open-close-principle-object-orientated-design-in-php/



Working Code

Liskov Substitution Principle

Objects can be replaced with sub 
classes without altering the 
correctness of that program



Working Code



Working Code

Interface Segregation Principle

No client should be forced to depend 
on methods it does not use



Working Code



Working Code

http://code.tutsplus.com/tutorials/solid-part-3-liskov-substitution-interface-segregation-principles--net-36710



Working Code

Dependency Inversion Principle
- High-level modules should not 

depend on low-level modules. Both 
should depend on abstractions.

- Abstractions should not depend 
upon details. Details should 
depend upon abstractions.



Working Code



Working Code



Working Code



Working Code



Working Code



Working Code

http://code.tutsplus.com/tutorials/solid-part-4-the-dependency-inversion-principle--net-36872



Tools/Processes

Utilize Version Control
- Git/Subversion
- Usage Strategy



Tools/Processes

Source: Peter Hanson & Associates – Share with the World Licensing : )



Tools/Processes

Centralize Knowledge/Ticketing
- Tracks information
- Common point of exchange
- JIRA/Redmine/Trac/Basecamp 

(maybe)



Tools/Processes

• Continuous Integration
• Automation

- Testing
- Builds



Summary

• There is a lot here
• Use what you’d like 
• Use at the time of need based on 

what will help you the most
• Keep learning: read/apply, 

read/apply, …



Recommended Reading

Books
- The Pragmatic Programmer: From Journeyman to Master, 

Andrew Hunt & David Thomas, ISBN-13: 978-0201616224

- Practices of an Agile Developer: Working in the Real 
World, Venkat Subramaniam & Andrew Hunt, ISBN-13: 
978-0974514086

- Clean Code: A Handbook of Agile Software 
Craftsmanship, Robert C Martin, ISBN-13: 978-0132350884

- The Clean Coder: A Code of Conduct for Professional 
Programmers, Robert C Martin, ISBN-13: 978-0137081073



Recommended Reading

Sites
- http://www.phptherightway.com/

- Google: “Scott Ambler and agile”

- Google: “how to communicate effectively at work”

- There are some good blogs, and I think they are helpful.  To 
optimize your learning, I’d recommend the books and 
applying though if possible.  The blogs may feel good (like 
you’re doing something) and are useful reminders, but 
they are not as effective as putting your time in with the 
books and at the keyboard.

http://www.phptherightway.com/


Take Action
• Pick one book.  Read it, apply it.  
• Build something that you care about 

(create a business, help a non-profit, 
make a family site, etc.).  

Learn with a purpose!
• Assess your current projects. Are there 

specific pain points? What practices here 
could help those? Apply the concept.



My Contact Information

• Skype (preferred): uar_pete.hanson
• Phone: 906-281-1178
• Email: Peter@upandrunning.com

I will not write any code for you because that 
could negatively affect your learning.  If you 
want a sounding board though, I’d like to 
help and let’s have a Skype call.  Open door.

mailto:Peter@upandrunning.com


Thank you
Questions 
Comments 
STONES?

Logout


	Agile Methodology�Presented to Jivko Sinapov’s Class on �4/25/14 (HCI 573X: Web Applications)
	Plan
	About Us
	Clients (some)
	Tech (some)
	Tech (some)
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	My Contact Information
	Logout

